Exam Code: 103201
Subject Code: 8826

B.A./B.Sc. - Ist Sem. (Old Syllabus 2014)

(2118)

Mathematics Paper-II

(Calculus-I)

Time allowed: $\mathbf{3} \mathbf{h r s}$.

Max. Marks: 50

Note: Attempt five questions in all, selecting atleast TWO questions from each section. All questions carry equal marks.

SECTION-A

1. a) Prove that $\sqrt{7}$ is not a rational number.
b) Solve $\frac{x-2}{x+2}<\frac{x+1}{x-1}$
2.a) Prove that union of two bounded sets is a bounded set. What can you say about its converse? Justify your answer.
b) Prove that $\underset{x \rightarrow 0}{L t} \sin \frac{1}{x}$ does not exist
3) a) Prove that ${ }_{x \rightarrow \frac{1}{2}}^{L t}\left[1+x+x^{2}\right]=1$
b) For what values of a and b will the following function be continuous $\forall x$?

$$
f(x)=\left\{\begin{array}{c}
13, \quad x \leq 2 \tag{3,4,3}\\
a x^{2}+b x+1,2<x<3 \\
17-a x, x \geq 3
\end{array}\right.
$$

c) Show that $f(x)=x^{2}+5$ is uniformly continuous on $[0,1]$.
4. a) Find $\frac{d y}{d x}$, if $y=x^{\cosh x}+(\sinh x)^{2 x}$
b) State and prove Squeeze Principle.
5) a) Give an example of a field which is not complete. Justify your answer.
b) Prove that $2 \tanh ^{-1}\left(\tan \frac{x}{2}\right)$ and $\cosh ^{-1}(\sec x)$ can only differ by a constant. $(5,5)$

SECTION-B

6) a) if $p^{2}=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta$ prove that $p+\frac{d^{2} p}{d \theta^{2}}=\frac{a^{2} b^{2}}{p^{3}}$
b) if $y=\cos \left(m \sin ^{-1} x\right)$, find $y_{n}(0)$
7) a) Evaluate $\underset{x \rightarrow 0}{\operatorname{Lt}}\left(\frac{a^{x}+b^{x}}{2}\right)^{\frac{1}{x}}$
b) Use Maclaurin's Theorem with Lagrange's form of remainder to expand sinx as far as the $\mathrm{n}^{\text {th }}$ term in terms of ascending powers of x .
b) Show that the points of inflexion of the curve $y^{2}=(x-a)^{2}(x-b)$ lie on the line $3 x+a=4 b$.
8) a) Find the position and nature of double points of the curve $y^{2}=(x-1)(x-2)^{2}$
b) Find the asymptotes of the curve
$3 x^{3}+2 x^{2} y-7 x y^{2}+2 y^{3}-14 x y+7 y^{2}+4 x+5 y=0$
Show that the asymptotes meet the curve again at three points which lie on a line. Find its equation.
10. a) Trace the curve $y=\frac{x}{1+x^{2}}$
b) Find the curvature at the point $\left(\frac{3 a}{2}, \frac{3 a}{2}\right)$ on the curve $\mathrm{x}^{3}+\mathrm{y}^{3}=3 \mathrm{axy}$

54(2118) 00

